Superscalar
A superscalar CPU architecture implements a form of parallelism called instruction-level parallelism within a single processor. It thereby allows faster CPU throughput than would otherwise be possible at the same clock rate. A superscalar processor executes more than one instruction during a clock cycle by simultaneously dispatching multiple instructions to redundant functional units on the processor. Each functional unit is not a separate CPU core but an execution resource within a single CPU such as an arithmetic logic unit, a bit shifter, or a multiplier.
While a superscalar CPU is typically also pipelined, they are two different performance enhancement techniques. It is theoretically possible to have a non-pipelined superscalar CPU or a pipelined non-superscalar CPU.
The superscalar technique is traditionally associated with several identifying characteristics. Note these are applied within a given CPU core.
- Instructions are issued from a sequential instruction stream
- CPU hardware dynamically checks for data dependencies between instructions at run time (versus software checking at compile time)
- Accepts multiple instructions per clock cycle
Contents[hide] |
History
Seymour Cray's CDC 6600 from 1965 is often mentioned as the first superscalar design. The Intel i960CA (1988) and the AMD 29000-series 29050 (1990) microprocessors were the first commercial single chip superscalar microprocessors. RISC CPUs like these brought the superscalar concept to micro computers because the RISC design results in a simple core, allowing straightforward instruction dispatch and the inclusion of multiple functional units (such as ALUs) on a single CPU in the constrained design rules of the time. This was the reason that RISC designs were faster than CISC designs through the 1980s and into the 1990s.
Except for CPUs used in some battery-powered devices, essentially all general-purpose CPUs developed since about 1998 are superscalar. Beginning with the "P6" (Pentium Pro and Pentium II) implementation, Intel's x86 architecture microprocessors have implemented a CISC instruction set on a superscalar RISC microarchitecture. Complex instructions are internally translated to a RISC-like "micro-ops" RISC instruction set, allowing the processor to take advantage of the higher-performance underlying processor while remaining compatible with earlier Intel processors.
From scalar to superscalar
The simplest processors are scalar processors. Each instruction executed by a scalar processor typically manipulates one or two data items at a time. By contrast, each instruction executed by a vector processor operates simultaneously on many data items. An analogy is the difference between scalar and vector arithmetic. A superscalar processor is sort of a mixture of the two. Each instruction processes one data item, but there are multiple redundant functional units within each CPU thus multiple instructions can be processing separate data items concurrently.
Superscalar CPU design emphasizes improving the instruction dispatcher accuracy, and allowing it to keep the multiple functional units in use at all times. This has become increasingly important when the number of units increased. While early superscalar CPUs would have two ALUs and a single FPU, a modern design such as the PowerPC 970 includes four ALUs, two FPUs, and two SIMD units. If the dispatcher is ineffective at keeping all of these units fed with instructions, the performance of the system will suffer.
A superscalar processor usually sustains an execution rate in excess of one instruction per machine cycle. But merely processing multiple instructions concurrently does not make an architecture superscalar, since pipelined, multiprocessor or multi-core architectures also achieve that, but with different methods.
In a superscalar CPU the dispatcher reads instructions from memory and decides which ones can be run in parallel, dispatching them to redundant functional units contained inside a single CPU. Therefore a superscalar processor can be envisioned having multiple parallel pipelines, each of which is processing instructions simultaneously from a single instruction thread.
Limitations
Available performance improvement from superscalar techniques is limited by two key areas:
- The degree of intrinsic parallelism in the instruction stream, i.e. limited amount of instruction-level parallelism, and
- The complexity and time cost of the dispatcher and associated dependency checking logic.
Existing binary executable programs have varying degrees of intrinsic parallelism. In some cases instructions are not dependent on each other and can be executed simultaneously. In other cases they are inter-dependent: one instruction impacts either resources or results of the other. The instructions a = b + c; d = e + f
can be run in parallel because none of the results depend on other calculations. However, the instructions a = b + c; d = a + f
might not be runnable in parallel, depending on the order in which the instructions complete while they move through the units.
When the number of simultaneously issued instructions increases, the cost of dependency checking increases extremely rapidly. This is exacerbated by the need to check dependencies at run time and at the CPU's clock rate. This cost includes additional logic gates required to implement the checks, and time delays through those gates. Research shows the gate cost in some cases may be nk gates, and the delay cost k2logn, where n is the number of instructions in the processor's instruction set, and k is the number of simultaneously dispatched instructions. In mathematics, this is called a combinatoric problem involving permutations.
Even though the instruction stream may contain no inter-instruction dependencies, a superscalar CPU must nonetheless check for that possibility, since there is no assurance otherwise and failure to detect a dependency would produce incorrect results.
No matter how advanced the semiconductor process or how fast the switching speed, this places a practical limit on how many instructions can be simultaneously dispatched. While process advances will allow ever greater numbers of functional units (e.g, ALUs), the burden of checking instruction dependencies grows so rapidly that the achievable superscalar dispatch limit is fairly small. -- likely on the order of five to six simultaneously dispatched instructions.
However even given infinitely fast dependency checking logic on an otherwise conventional superscalar CPU, if the instruction stream itself has many dependencies, this would also limit the possible speedup. Thus the degree of intrinsic parallelism in the code stream forms a second limitation.